
Baxter and Manipulation

BIOMIMETICS AND ROBOTICS LAB (BIRL)
GUANGDONG UNIVERSITY OF TECHNOLOGY (GDUT)

 2017 • ROS Summer School

JUAN ROJAS
www.JuanRojas.net

ROS By Example in Chinese

Available at: Taobao, Amazon.cn, JD.com, Dangdang.com

Support Programs

APT-GET
• Used to download programs in linux

sudo apt-get update

sudo apt-get upgrade

TERMINATOR
Great to run multiple terminals in the same window.

EMACS OR VIM

 Extremely powerful editors and more.
◦ Powerful editor Live terminals
◦ Strong integration with GDB/PDB Easily expandable

GIT

So, what can this robot do?

Programming Layers

• Python interface for Baxter.
• Interface interacts with ROS.
• Goal to facilitate programming.

API

• Defines ROS:
messages, topics, services, action libs.

• Also provides command line tools.
SDK

Getting the Baxter Code
• Open source @ sdk.rethinkrobotics.com/wiki/Workstation_Setup

Baxter’s SDK
• As part of the SDK, Rethink has defined:

• Topics: /robot/limb/….
/robot/head/…

• Message Types:
baxter_core_msgs/

• Parameters:
/baxter_emulator/left_gripper_type

• Services:
/ExternalTools/PositionKinematicsNode/IKService

• Action Libs:
/robot/limb/<limb>/follow_joint_trajectory/feedback
/robot/limb/<limb>/follow_joint_trajectory/result
/robot/limb/<limb>/follow_joint_trajectory/status

• User Tools
rosrun baxter_tools ….

Getting Baxter Started

 Setting the Baxter environment:

• Starting the Simulator:

>> roscd (ROS_WORKSPACE=/your_fav_ws_path)
>> ./baxter.sh (sim for simulator)

>> roslaunch baxter_gazebo baxter_world.launch

• For real Baxter, you can check for automatic connection:

>> roslaunch baxter_gazebo baxter_world.launch

Baxter’s Arm and Head Joints
 The 7 DoF arms and Head pan consists of joints states, including:

◦ Position – joint angles (radians)
◦ Velocities – joint velocities (rad/s)
◦ Effort – torque exerted at each joint (Nm)

Topic

 Message Type:

/robot/joint_states

sensor_msgs/JointState

Baxter’s Arms: Control Modes
 Arms can be controlled in 4 different modes. Top 3:

◦ Position Control – controller moves to target joint angles
◦ Velocity Control – controller moves to target joint velocities
◦ Torque Control – controller moves to target joint torques

int32 POSITION_MODE=1, int32 VELOCITY_MODE=2,
int32 TORQUE_MODE=3, int32 RAW_POSITION_MODE=4
int32 mode,
float64[] command
string[] names

/robot/limb/<side>/joint_command (baxter_core_msgs/JointCommand.msg)
Switch modes by pub commands (pos,vel,effort) @ > 5Hz

Message Type: baxter_core_msgs/JointCommand

Move Arm Manually…
rostopic pub -r 1000
/robot/limb/right/joint_command
baxter_core_msgs/JointCommand
'{mode: 1, command: [0.1744], names: ['right_s0']}'

Publish to joint_command
• Manually test right position/velocity control.

rostopic pub -r 10 /robot/limb/right/joint_command
baxter_core_msgs/JointCommand '{mode: 1, command: [-1.0], names:
['right_s0']}'

rostopic pub -r 10 /robot/limb/right/joint_command
baxter_core_msgs/JointCommand '{mode: 2, command: [-0.01], names:
['right_s0']}'

• Simple Position Control Command

• Simple Velocity Control Command

EndPointState
 Provides the following at the end-effector:

◦ Pose (m)
(position, orientation)

◦ Twist (m/s)
(lin vel, angular vel)

◦ Wrench (N/m)
(forces, torques)

/robot/limb/<side>/endpoint_state (baxter_core_msgs-EndpointState)

Baxter API

API

 Instead of having to:
◦ Publish or subscribe
◦ Call services

 Call one of the API methods and
◦ read/write data through function arguments.

 API is organized according to:
◦ Modules

◦ Sub-modules.

What is the API?
A new layer of code (based on python) is built on top of ROS.

The Baxter Interface:
Python Module

 baxter_interface
◦ This module consists of sub-modules to help interact with different

parts of the robot.
◦ Each sub-module consists of a class of the same name.

baxter_interface::limb::Limb
◦ The class is a wrapper around ROS communications.

 Sub-Modules (Interfaces)

For more see: http://sdk.rethinkrobotics.com/wiki/Baxter_Interface

Robot Enable Limb Head Camera

Gripper Navigator Digital IO Analog IO

Limb
 Limb is the class within the limb sub-module.

◦ Queries the joint state
◦ Switches between control modes
◦ Sends Joint Commands (pos, vel, torque)

/robot/joint_states
/robot/limb/<side>/joint_command

Topics

Limb Class Overview
 The methods below consider position only but…
The same routines exist for velocity and effort.

For more see: http://api.rethinkrobotics.com/baxter_interface/html/baxter_interface.limb-pysrc.html#Limb

BAXTER REPO
https://github.com/RethinkRobotics/baxter

BIRL BAXTER
REPO
https://github.com/birlrobotics/birl_baxter/wiki

BIRL Robotics GitHub Repo

BAXTER
EXAMPLES

Baxter Examples
http://sdk.rethinkrobotics.com/wiki/Examples

Random Pick and Place w/
Smach

•Open 5 terminator windows and run the ./baxters.sh sim script in all of them.

$ roslaunch birl_baxter_description pick_n_place_box_gazebo.launch

• Launch gazebo along with all the URDFs

$ rosrun birl_baxter_description pick_n_place_box_gazebo.launch

• Run a service server to serve client calls.

$ rosrun birl_sim_examples pick_n_place_srv_client_random_smach.py

• Try different clients to perform tasks:

$ rosrun smach_viewer smach_viewer.py

• Open the smach viewer:

$ rosrun birl_sim_examples pick_n_place_joint_trajectory_smach.py

•Run the Joint Trajectory Action Server:

Random Pick and Place w/
Smach

•Open 5 terminator windows and run the ./baxters.sh sim script in all of them.

$ roslaunch birl_baxter_description pick_n_place_box_gazebo.launch

• Launch gazebo along with all the URDFs

$ rosrun birl_baxter_description pick_n_place_box_gazebo.launch

• Run a service server to serve client calls.

$ rosrun birl_sim_examples pick_n_place_joint_trajectory_smach.py

• Try different clients to perform tasks:

$ rosrun smach_viewer smach_viewer.py

• Open the smach viewer:

$ rosrun birl_sim_examples pick_n_place_joint_trajectory_smach.py

•Run the Joint Trajectory Action Server:

Advanced: Pick and Place with
Anomaly Recovery

Advanced: Open and Close
Drawer with Anomaly Recovery

questions

