
 Deep Learning and
its applications to robotics

Pinxin Long

Outline

● An Introduction to Deep Learning

● Deep Learning Libraries (Keras)

● Its Applications to Robotics

Traditional Design Cycle

this slide from Xiaogang Wang

this slide from Xiaogang Wang

this slide from Sergey Levine

this slide is from Qinrui Yan

this slide is from Qinrui Yan

this slide is from Qinrui Yan

this slide is from Qinrui Yan

this slide is from Qinrui Yan

this slide is from Qinrui Yan

this slide is from Qinrui Yan

this slide is from Qinrui Yan

Problem of 'deep' structure

In general, the more layers a neural network has, the more
representative ability it has.

● Gradient diffusion: Errors are difficult to back propogate.

● Overfitting: Too many parameters, easy to drop into local
minimal.

this slide is from Qinrui Yan

Convolution neural network (CNN)
● Designed for 2-dimensional object recognition, take the spatial information

into account.

● Basic types of layers:
 1. convolution layer: for feature extraction
 2. sub-sampling layer: for simplifying feature, prevent overfitting.
 3. fully connected layer: for final classification.

this slide is from Qinrui Yan

this slide is from Qinrui Yan

Recurrent Neural Networks (RNNs)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/

https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/

RNNs

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Drawbacks of deep learning

1. Computation is expensive
2. It is very difficult and labour intensive to get labelled data.
3. Brute force.

We have to realize, deep neural network is not the final solution of Artificial
Intelligence. Actually for human, most of knowledge comes from unsupervised
learning, so a long way need to go.
How to bring prior knowledge in to the model is still a important issue.

this slide is from Qinrui Yan

Conclusion
1. Deep Learning is a very simple but powerful tool of feature learning,
especially for perception in Robotics.

2. Where is the training data from?

3. How to simplify data processing according to the specify task of robot.

4. Deep Learning is changing lots of things, sometimes even over our
expectations. We should pay attention to its development.

this slide is from Qinrui Yan

Deep Learning Libraries

More info...https://github.com/zer0n/deepframeworks

Keras: An Introduction

What is Keras?

● Neural Network library written in Python
● Designed to be minimalistic & straight forward yet extensive
● Built on top of either Theano or newly TensorFlow

Why use Keras?

● Simple to get started, simple to keep going
● Written in python and highly modular; easy to expand
● Deep enough to build serious models

General Design

General idea is to based on layers and their
input/output

● Prepare your inputs and output tensors
● Create first layer to handle input tensor
● Create output layer to handle targets
● Build virtually any model you like in between

Layers and Layers
Keras has a number of pre-built layers.

● Regular dense, MLP type
●

● Recurrent layers, LSTM, GRU, etc.

● 1D Convolutional layers

● 2D Convolutional layers

Other types of layer include:

● Dropout
● Noise
● Pooling
● Normalization (BatchNormalization)
● Embedding
● Flatten & Merge
● And many more...

Activations

More or less all your favourite activations are available:

● Sigmoid, tanh, ReLu, softplus, hard sigmoid, linear
● Advanced activations implemented as a layer (after

desired neural layer)
● Advanced activations: LeakyReLu, PReLu, ELU,

Parametric, Softplus, Thresholded linear and Thresholded
Relu

Objectives and Optimizers

Objective Functions:

● Error loss: rmse, mse, mae, mape, msle
● Hinge loss: squared hinge, hinge
● Class loss: binary crossentropy, categorical crossentropy

Optimization:

● Provides SGD, Adagrad, Adadelta, Rmsprop and Adam
● All optimizers can be customized via parameters

Parallel Capabilities

● Training time is drastically reduced thanks to Theano’s
GPU support

● Theano compiles into CUDA, NVIDIA’s GPU API
● Currently will only work with NVIDIA cards but Theano is

working on OpenCL version

● TensorFlow has similar support

Architecture/Weight Saving and Loading
● Model architectures can be saved and loaded

● Model parameters (weights) can be saved and loaded

Callbacks

Allow for function call during training

● Callbacks can be called at different points of training
(batch or epoch)

● Existing callbacks: Early Stopping, weight saving after
epoch, learning rate

● Easy to build and implement, called in training function, fit
()

Model Type: Sequential

● Sequential models are linear
 stack of layers
● The model we all know and
 love
● Treat each layer as object
 that feeds into the next

Functional API

● Optimized over all outputs
● Graph model allows for two
 or more independent
 networks to diverge or merge
● Allows for multiple separate
 inputs or outputs
● Different merging layers
 (sum, concat, elem-wise
 mult, ave, dot product, cos
 proximity)

In Summary

Pros:

● Easy to implement
● Lots of choice
● Extendible and

customizable
● GPU
● High level
● Active community
● keras.io

Cons:

● Lack of generative
models

● High level

Its Applications to Robotics

● Problem

● Data

● Model

Supersizing Self-supervision: Learning to Grasp
from 50K Tries and 700 Robot Hours
(ICRA 2016 Best student Paper Award)

● Problem:

http://www.youtube.com/watch?v=oSqHc0nLkm8

● Data:

● Data

● Model

A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots (RAL 2016)
● Problem

● Problem

● Data

● Model

Recurrent Neural Networks for Driver Activity Anticipation
via Sensory-Fusion Architecture (ICRA2016)

● Problem

● Data

● Model

Bin-picking Robot Deep Learning

http://www.youtube.com/watch?v=ydh_AdWZflA

http://www.youtube.com/watch?v=l8zKZLqkfII

