
ROS Industrial

LIU Yao

ECNU Intelligent Robot Lab

Introduction

•ROS-Industrial
The ROS-Industrial packages comes with a solution to
interface industrial robot manipulators to ROS and
controlling it using the power of ROS.

Introduction

•Goal
- Combine strengths of ROS to the existing industrial
technologies for exploring advanced capabilities of ROS
in the manufacturing process.
- Developing a reliable and robust software for
industrial robots application.
- Provide an easy way for doing research and
development in industrial robotics.

Introduction

•Install
$ sudo apt-get install ros-indigo-industrial-*

•Packages
• industrial_robot_simulator
• industrial_robot_client
• …

Introduction

Model

•ROS packages for robot modeling
• robot_model:

• urdf
• joint_state_publisher
• kdl_parser

• robot_state_publisher
• xacro

URDF: Overview

•URDF is an XML-formatted file containing:

– Links : coordinate frames and associated geometry

– Joints : connections between links

URDF: Link

•A Link describes a physical or virtual object

– Physical : robot link, end-effector, ...

– Virtual : TCP, robot base frame, ...

•Each link becomes a TF frame

•Can contain visual/collision geometry

URDF: Link

URDF: Joint

•A Joint connects 2 Links
– Defines a transform between parent and child frames

• Types: fixed, revolute, free, floating, planar

– Denotes axis of movement (for linear / rotary)
– Contains joint limits on position and velocity

• ROS-I conventions

– X-axis front, Z-Axis up
– Keep all frames similarly rotated when possible

URDF: Joint

URDF: Joint

URDF: Check

•Check urdf
• $ check_urdf planar_3dof.urdf
• $ urdf_to_graphiz planar_3dof.urdf
• $ evince planar_3dof.pdf

•Show in rviz
• roslaunch urdf_tutorial display.launch model:=`rospack find

lesson_urdf`/urdf/planar_3dof.urdf gui:=true

URDF: XACRO

• XACRO is an XML-based “macro language” for
building URDFs

– <Include> other XACROs, with parameters
– Simple expressions: math, substitution

• Used to build complex URDFs
– multi-robot workcells
– reuse standard URDFs (e.g. robots, tooling)

• Convert
$ rosrun xacro xacro.py -o <urdf_file> <xacro_file>

URDF: gazebo

• The collision and inertia parameters are
required in each link

• Transmission tag
- Relate a joint to a controller

• gazebo_ros_control plugin

URDF: Example

•ABB + gripper + workpiece
•$ roslaunch lesson_xacro lesson_xacro.launch

•Keyboard Control
•modify launch file

Actions

Actions

•Message:
Robot teleoperation, publishing odometry, sending
robot transform(TF), and sending robot joint states

•Service:
This saves camera calibration parameters to a file,
saves a map of the robot after SLAM, and loads a
parameter file

•Action:
This is used in motion planners and ROS navigation
stacks

Actions : Overview

Actions: Detail

•Each action is made up of 3 components:
– Goal, sent by client, received by server
– Result, generated by server, sent to client
– Feedback, generated by server

• Examples
– Goal:

If a robot arm joint wants to move from 45 degrees to 90 degrees,
the goal here is 90 degrees.

– Result:
The result can be anything indicating it finished the goal.

– Feedback:
The intermediate value between 45 and 90 degrees in which the
arm is moving.

Actions: Detail

•Non-blocking in client
– Can monitor feedback or cancel before completion

• Typical Uses:

– “Long” Tasks: Robot Motion, Path Planning
– Complex Sequences: Pick Up Box, Sort Widgets

Actions: Syntax

•Action definition
– Defines Goal, Feedback and Result data types

• Any data type(s) may be empty. Always receive handshakes.

– Auto-generates C++ Class files (.h/.cpp), Python, etc.

Actions: Syntax

• Action Server
– Defines Execute Callback

– Periodically Publish Feedback

– Advertises available action (Name, Data Type)

void executeCB(const CalcPiGoalConstPtr &goal) {

loop {

if (as_.isPreemptRequested() || !ros::ok())

as_.setPreempted();

as_.publishFeedback(…);

}

as_.setSucceeded(result_);

}

SimpleActionServer<CalcPiAction> as_ (“calcPi”, &executeCB);

Callback Function Goal Data (IN)

Check for
Cancel

Feedback

Result

Server Object

Action Name Callback Ref

Actions: Syntax

• Action Client
– Connects to specific Action (Name / Data Type)

– Fills in Goal data

– Initiate Action / Waits for Result

SimpleActionClient<CalcPiAction> ac(“calcPi");

CalcPiGoal goal;

goal.digits = 7;

ac.sendGoal(goal);

ac.waitForResult();

Action Type Client Object Action Name

Goal Data

Initiate Action

Block Waiting

Actions: Examples

•Example

Actions: Examples

MoveIt!: Overview

•MoveIt! is a set of packages and tools for doing
mobile manipulation in ROS.

•MoveIt! contains state of the art software for
motion planning, manipulation, 3D perception,
kinematics, collision checking, control, and
navigation.

MoveIt!: Overview

•Motion Planning for industrial robot

http://moveit.ros.org/documentation/concepts/

MoveIt!: Overview

http://moveit.ros.org/documentation/concepts/

MoveIt!: Overview

Sensor Input

MoveIt! / Robot Integration

• A MoveIt! Package...

– includes all required nodes, config, launch files
• motion planning, filtering, collision detection, etc.

– is unique to each individual robot model
• includes references to URDF robot data

– uses a standard interface to robots
• publish trajectory, listen to joint angles

– can (optionally) include workcell geometry
• e.g. for collision checking

MoveIt Example

• A lot goes into making the
UR5 move:
– Joint states

– Robot drivers

– Path planners

– Execution monitoring

• This is why MoveIt is
valuable

MoveIt!: Overview

•Install
•$ sudo apt-get install ros-indigo-moveit-full

•$ sudo apt-get install ros-indigo-universal-robot
•ur_description
•ur_driver
•ur_bringup
•ur_gazebo
•ur_msgs
•ur10_moveit_config/ur5_moveit_config
•ur_kinematics

•$ sudo apt-get install ros-<distro>-abb

MoveIt!: Overview

•Planning Environment
•$ roslaunch abb_irb2400_moveit_config demo.launch

For each new robot model...

create a new MoveIt! package

• Kinematics
– physical configuration, lengths, etc.

• MoveIt! configuration
– plugins, default parameter values
– self-collision testing

– pre-defined poses

• Robot connection
– FollowJointTrajectory Action name

MoveIt!

HowTo:
Set Up a New Robot

Create a URDF
Create a MoveIt! Package
Update MoveIt! Package for ROS-I
Test on ROS-I Simulator
Test on “Real” Robot

1.
2.
3.
4.
5.

MoveIt!

Create a URDF

•Previously covered URDF basics

Verify the URDF

• It is critical to verify that your URDF matches
the physical robot:

– each joint moves as expected

– joint-coupling issues are identified

– min/max joint limits

– joint directions (pos/neg)

– correct zero-position, etc.

Create a MoveIt! Package

• Use the MoveIt! Setup Assistant

– can create a new package or edit an existing one

Create a MoveIt! Package

•Launch the MoveIt Setup Assistant:
•$roslaunch moveit_setup_assistant

setup_assistant.launch
•$rospack find abb_irb2400_support

•Calculate Self-Collisions

•Add a Virtual Joint
•FixedBase: base_link -> world, type: fixed

Create a MoveIt! Package

•Add arm joints to Planning Group
•Group Name: manipulator
•Kinematic Solver: KDL
•Add Kin Chain: base_link and tool0

•Add robot poses

•Generate configuration files

Update MoveIt! Package

• Setup Assistant generates a generic package

– missing config. data to connect to a specific robot

– ROS-I robots use a standard interface

FollowJointTrajectory
Action

Joint_Names,

Points

- Point 1

- Point 2

...

Joint
Trajectory

Action Server

Update MoveIt! Package

• We’ll generate launch files to run both:
– simulated ROS-I robot

– real robot-controller interface

ROS Industrial

MoveIt!

Arm Nav.

Custom

Path

Industrial
Robot

Simulator

Motion Interface

State Interface

Update MoveIt! Package

•Check
•$ roslaunch irb2400_moveit_cfg

moveit_planning_execution.launch

HowTo:
Motion Planning using MoveIt!

1. Motion Planning using RViz

2. Motion Planning using C++

Motion Planning in RViz

Display Options

Motion Planning in RViz

Planning Options

Motion Planning using C++

•$ roslaunch irb2400_moveit_cfg
moveit_planning_execution.launch

•$ rosrun lesson_move_group
lesson_move_group_1

demo

Moveit！ controller ros_control

demo

Pick & Place

demo

•Rviz add , display model

demo

•Ur5 + gripper

