Probabilistic Roadmaps

Dinesh Manocha

Based on Slides from Hsu and Latombe

Free-Space and C-Space Obstacle

\square How do we know whether a configuration is in the free space?
\square Computing an explicit representation of the freespace boundary is very hard in practice?
\square High theoretical complexity

- Issues in robust implementation

Free-Space and C-Space Obstacle

\square How do we know whether a configuration is in the free space?
\square Computing an explicit representation of the free-space is very hard in practice?
\square Solution: Compute the position of the robot at that configuration in the workspace. Explicitly check for collisions with any obstacle at that position:

- If colliding, the configuration is within C-space obstacle

■ Otherwise, it is in the free space
\square Performing collision checks is relative simple

Two geometric primitives in configuration

 space$\square \operatorname{CleAR}(q)$
Is configuration q collision free or not?
$\square \operatorname{LINK}\left(q, q^{\prime}\right)$
Is the straight-line path between q and q ' collision-free?

- Proximity $\left(q, q^{\prime}\right)$

Are two configuration q and q, close to each other?

Difficulty with classic approaches

\square Running time increases exponentially with the dimension of the configuration space.
\square For a d-dimension grid with 10 grid points on each dimension, how many grid cells are there?

10^{d}

\square Several variants of the path planning problem have been proven to be PSPACE-hard.

Completeness

\square Complete algorithm \rightarrow Slow
\square A complete algorithm finds a path if one exists and reports no otherwise.

- Example: Canny's roadmap method
\square Heuristic algorithm \rightarrow Unreliable
■ Example: potential field
\square Probabilistic completeness
- Intuition: If there is a solution path, the algorithm will find it with high probability.

Probabilistic Roadmap (PRM): multiple queries

Probabilistic Roadmap (PRM): single query

Multiple-Query PRM

Classic multiple-query PRM

\square Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces, L. Kavraki et al., 1996.

Assumptions

\square Static obstacles
\square Many queries to be processed in the same environment
\square Examples
■ Navigation in static virtual environments
\square Robot manipulator arm in a workcell

Overview

\square Precomputation: roadmap construction
■Uniform sampling
-Resampling (expansion)
\square Query processing

Uniform sampling

Input: geometry of the moving object \& obstacles Output: roadmap $G=(V, E)$

1: $\mathrm{V} \leftarrow \varnothing$ and $\mathrm{E} \leftarrow \varnothing$.
2: repeat
3: \quad q $\leftarrow a$ configuration sampled uniformly at random from C.
4: if CLEAR (q) then
5: Add q to V.
6: $\quad N_{\mathrm{q}} \leftarrow a$ set of nodes in V that are close to q.
6: for each $q^{\prime} \in N_{q}$, in order of increasing $d\left(q, q^{\prime}\right)$
7: if LINK (q^{\prime}, q) then
8: Add an edge between q and q^{\prime} to E.

Some terminology

\square The graph G is called a probabilistic roadmap.
\square The nodes in G are called milestones.

Difficulty

\square Many small connected components

Resampling (expansion)

\square Failure rate

$$
r(q)=\frac{\text { no. failed LINK }}{\text { no. LINK }}
$$

\square Weight

$$
w(q)=\frac{r(q)}{\sum_{p} r(p)}
$$

\square Resampling probability

$$
\operatorname{Pr}(q)=w(q)
$$

Resampling (expansion)

Query processing

\square Connect $q_{\text {init }}$ and $q_{\text {goal }}$ to the roadmap
\square Start at $q_{\text {init }}$ and $q_{\text {goal }}$, perform a random walk, and try to connect with one of the milestones nearby
\square Try multiple times

Error

\square If a path is returned, the answer is always correct.

- If no path is found, the answer may or may not be correct. We hope it is correct with high probability.

Why does it work? Intuition

\square A small number of milestones almost "cover" the entire configuration space.

Smoothing the path

Smoothing the path

Summary

\square What probability distribution should be used for sampling milestones?
\square How should milestones be connected?
\square A path generated by a randomized algorithm is usually jerky. How can a path be smoothed?

Single-Query PRM

Lazy PRM

\square Path Planning Using Lazy PRM, R. Bohlin \& L. Kavraki, 2000.

Precomputation: roadmap construction

\square Nodes
$■$ Randomly chosen configurations, which may or may not be collision-free
\square No call to CLEAR
\square Edges

- an edge between two nodes if the corresponding configurations are close according to a suitable metric
- no call to LINK

Query processing: overview

Find a shortest path in the roadmap
Check whether the nodes and edges in the path are collision.
If yes, then done. Otherwise, remove the nodes or edges in violation. Go to (1).

We either find a collision-free path, or exhaust all paths in the roadmap and declare failure.

Query processing: details

\square Find the shortest path in the roadmap

- A* algorithm

■ Dijkstra's algorithm
\square Check whether nodes and edges are collisions free
■ $\operatorname{CLEAR}(q)$
$■ \operatorname{LINK}\left(q_{0}, q_{1}\right)$

Node enhancement

\square Select nodes that close the boundary of F

Sampling a Point Uniformly at Random

Positions

\square Unit interval
Pick a random number from $[0,1]$
\square Unit square
\square Unit cube

Intervals scaled \& shifted

\square What shall we do?

If x is a random number from $[0,1]$, then $7 x-2$.

Orientations in 2-D

\square Sampling

1. Pick x uniform at random from $[-1,1]$
2. Set $y=\sqrt{1-x^{2}}$
\square Intervals of same widths are sampled with equal probabilities

Orientations in 2-D

- Sampling

1. Pick θ uniformly at random from $[0,2 \pi]$
2. Set $\mathrm{x}=\cos \theta$ and $y=\sin \theta$
$\square \quad$ Circular arcs of same angles are sampled with equal probabilities.

What is the difference?

\square Both are uniform in some sense.
\square For sampling orientations in 2-D, the second method is usually more appropriate.

\square The definition of uniform sampling depends on the task at hand and not on the mathematics.

Orientations in 3-D

\square Unit quaternion
$\left(\cos \xi / 2, n_{\mathrm{x}} \sin \xi / 2, n_{\mathrm{y}} \sin \xi / 2, n_{\mathrm{z}} \sin \xi / 2\right)$ with $n_{\mathrm{x}}^{2}+n_{\mathrm{y}}^{2}+n_{\mathrm{z}}{ }^{2}=1$.
\square Sample \mathbf{n} and θ separately
\square Sample ξ from $[0,2 \pi]$ uniformly at random

Sampling a point on the unit sphere

\square Longitude and latitude

$$
\left\{\begin{array}{l}
n_{x}=\sin \theta \cos \varphi \\
n_{y}=\sin \theta \sin \varphi \\
n_{z}=\cos \theta
\end{array}\right.
$$

First attempt

\square Choose θ and φ uniformly at random from $[0,2 \pi]$ and $[0, \pi]$, respectively.

Better solution

\square Spherical patches of same areas are sampled with equal probabilities.
\square Suppose U_{1} and U_{2} are chosen uniformly at random from $[0,1]$.

$$
\left\{\begin{array}{l}
n_{z}=U_{1} \\
n_{x}=R \cos \left(2 \pi U_{2}\right) \\
n_{y}=R \sin \left(2 \pi U_{2}\right)
\end{array}\right.
$$

where $R=\sqrt{1-U_{1}^{2}}$

Medial Axis based Planning

\square Use medial axis based sampling
■ Medial axis: similar to internal Voronoi diagram; set of points that are equidistant from the obstacle

- Compute approximate Voronoi boundaries using discrete computation

Medial Axis based Planning

\square Sample the workspace by taking points on the medial axis
\square Medial axis of the workspace (works well for translation degrees of freedom)

- How can we handle robots with rotational degrees of freedom?

