What is a Path?

Tool: Configuration Space (C-Space C)

Configuration Space

Definition

- A robot configuration is a specification of the positions of all robot points relative to a fixed coordinate system
- Usually a configuration is expressed as a "vector" of position/orientation parameters

Rigid Robot Example

- 3-parameter representation: $q=(x, y, \theta)$
- In a 3-D workspace q would be of the form ($x, y, z, \alpha, \beta, \gamma$)

Articulated Robot Example

Protein example

Configuration Space of a Robot

- Space of all its possible configurations But the topology of this space is usually not that of a Cartesian space

Configuration Space of a Robot

- Space of all its possible configurations
- But the topology of this space is usually not that of a Cartesian space

Configuration Space of a Robot

- Space of all its possible configurations
- But the topology of this space is usually not that of a Cartesian space

What is its Topology?

$(S 1)^{7} \times R^{3}$

Structure of Configuration Space

-It is a manifold
For each point q, there is a 1-to-1 map between a neighborhood of q and a Cartesian space \mathbf{R}^{n}, where n is the dimension of C

- This map is a local coordinate system called a chart.
C can always be covered by a finite number of charts. Such a set is called an atlas

Example

Case of a Planar Rigid Robot

- 3-parameter representation: $q=(x, y, \theta)$ with $\theta \in$ $[0,2 \pi)$. Two charts are needed
- Other representation: $q=(x, y, \cos \theta, \sin \theta)$
\rightarrow-space is a 3-D cylinder $R^{2} \times S^{1}$ embedded in a 4-D space

Rigid Robot in 3-D Workspace
 - $q=(x, y, z, \alpha, \beta, \gamma)$

The c-space is a 6-D space (manifold) embedded in a 12-D Cartesian space. It is denoted by $\mathrm{R}^{3} \times S O$ (3)

- Other representation: $q=\left(x, y, z, r_{11}, r_{12}, \ldots, r_{33}\right)$ where r_{11}, r_{12}, \ldots, r_{33} are the elements of rotation matrix R :

$$
\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)
$$

$-r_{i 1}{ }^{2}+r_{i 2}{ }^{2}+r_{i 3}{ }^{2}=1$
$-r_{i 1} r_{j 1}+r_{i 2} r_{2 j}+r_{i 3} r_{j 3}=0$
$-\operatorname{det}(R)=+1$

Parameterization of SO(3)

- Euler angles: (ϕ, θ, ψ)

Metric in Configuration Space

A metric or distance function d in C is a map $d:\left(q_{1}, q_{2}\right) \in C^{2} \rightarrow d\left(q_{1}, q_{2}\right) \geq 0$
such that:
$-d\left(q_{1}, q_{2}\right)=0$ if and only if $q_{1}=q_{2}$
$-d\left(q_{1}, q_{2}\right)=d\left(q_{2}, q_{1}\right)$
$-d\left(q_{1}, q_{2}\right) \leq d\left(q_{1}, q_{3}\right)+d\left(q_{3}, q_{2}\right)$

Metric in Configuration Space

Example:

- Robot A and point x of \mathbf{A}
- $x(q)$: location of x in the workspace when A is at configuration q
- A distance d in C is defined by:

$$
d\left(q, q^{\prime}\right)=\max _{x \in A}\left\|x(q)-x\left(q^{\prime}\right)\right\|
$$

where $||a-b||$ denotes the Euclidean distance between points a and b in the workspace

Specific Examples in $R^{2} \times S^{1}$

$\square^{\square} q=(x, y, \theta), q^{\prime}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)$ with $\theta, \theta^{\prime} \in[0,2 \pi)$
${ }^{-} \alpha=\min \left\{\left|\theta-\theta^{\prime}\right|, 2 \pi-\left|\theta-\theta^{\prime}\right|\right\}$

- $d\left(q, q^{\prime}\right)=\operatorname{sqrt}\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\alpha^{2}\right] \quad \theta^{\prime}$
- $d\left(q, q^{\prime}\right)=\operatorname{sqrt}\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+(\alpha \rho)^{2}\right]$
where ρ is the maximal distance between the reference point and a robot point

Notion of a Path

- A path in C is a piece of continuous curve connecting two configurations q and q^{\prime} :

$$
\tau: s \in[0,1] \rightarrow \tau(s) \in \dot{C}
$$

- $s^{\prime} \rightarrow s \Rightarrow d\left(\tau(s), \tau\left(s^{\prime}\right)\right) \rightarrow 0$

Other Possible Constraints on Path

q_{4}

- Finite length, smoothness, curvature, etc...
- A trajectory is a path parameterized by time:

$$
\tau: \dagger \in[0, T] \rightarrow \tau(\dagger) \in C
$$

Obstacles in C-Space

- A configuration q is collision-free, or free, if the robot placed at q has null intersection with the obstacles in the workspace
- The free space F is the set of free configurations
- A C-obstacle is the set of configurations where the robot collides with a given workspace obstacle
- A configuration is semi-free if the robot at this configuration touches obstacles without overlap

Disc Robot in 2-D Workspace

Rigid Robot Translating in 2-D

$$
C B=B \ominus A=\{b-a \mid a \in A, b \in B\}
$$

Rigid Robot Translating in 2-D

 $C B=B \ominus A=\{b-a \mid a \in A, b \in B\}$

Linear-Time Computation of C-Obstacle in 2-D

$O(n+m)$

Rigid Robot Translating and Rotating in 2-D

C-Obstacle for Articulated Robot

Free and Semi-Free Paths

- A free path lies entirely in the free space F
- A semi-free path lies entirely in the semi-free space

Remark on Free-Space Topology

- The robot and the obstacles are modeled as closed subsets, meaning that they contain their boundaries
- One can show that the C-obstacles are closed subsets of the configuration space C as well
- Consequently, the free space F is an open subset of C. Hence, each free configuration is the center of a ball of non-zero radius entirely contained in F
- The semi-free space is a closed subset of C. Its boundary is a superset of the boundary of F

O

Notion of Homotopic Paths

- Two paths with the same endpoints are homotopic if one can be continuously deformed into the other
- $R \times S^{1}$ example:

- τ_{1} and τ_{2} are homotopic
- τ_{1} and τ_{3} are not homotopic
- In this example, infinity of homotopy classes

Connectedness of C-Space

- C is connected if every two configurations can be connected by a path
- C is simply-connected if any two paths connecting the same endpoints are homotopic Examples: \mathbf{R}^{2} or \mathbf{R}^{3}
- Otherwise C is multiply-connected Examples: S^{1} and $\mathrm{SO}(3)$ are multiply- connected:
- In S1, infinity of homotopy classes
- In SO(3), only two homotopy classes

